skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kukavica, Igor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We examine a micro-scale model of superfluidity derived by Pitaevskii (Sov. Phys. JETP 8:282-287, 1959) which describes the interacting dynamics between superfluid He-4 and its normal fluid phase. This system consists of the nonlinear Schrödinger equation and the incompressible, inhomogeneous Navier-Stokes equations, coupled to each other via a bidirectional nonlinear relaxation mechanism. The coupling permits mass/momentum/energy transfer between the phases, and accounts for the conversion of superfluid into normal fluid. We prove the existence of global weak solutions in$${\mathbb {T}}^3$$ T 3 for a power-type nonlinearity, beginning from small initial data. The main challenge is to control the inter-phase mass transfer in order to ensure the strict positivity of the normal fluid density, while obtaining time-independent a priori estimates. 
    more » « less
  2. Abstract We investigate a micro-scale model of superfluidity derived by Pitaevskii (1959Sov. Phys. JETP8282–7) to describe the interacting dynamics between the superfluid and normal fluid phases of Helium-4. The model involves the nonlinear Schrödinger equation (NLS) and the Navier–Stokes equations, coupled to each other via a bidirectional nonlinear relaxation mechanism. Depending on the nature of the nonlinearity in the NLS, we prove global/almost global existence of solutions to this system in T 2 —strong in wavefunction and velocity, and weak in density. 
    more » « less