Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We examine a micro-scale model of superfluidity derived by Pitaevskii (Sov. Phys. JETP 8:282-287, 1959) which describes the interacting dynamics between superfluid He-4 and its normal fluid phase. This system consists of the nonlinear Schrödinger equation and the incompressible, inhomogeneous Navier-Stokes equations, coupled to each other via a bidirectional nonlinear relaxation mechanism. The coupling permits mass/momentum/energy transfer between the phases, and accounts for the conversion of superfluid into normal fluid. We prove the existence of global weak solutions in$${\mathbb {T}}^3$$ for a power-type nonlinearity, beginning from small initial data. The main challenge is to control the inter-phase mass transfer in order to ensure the strict positivity of the normal fluid density, while obtaining time-independent a priori estimates.more » « less
- 
            Abstract We investigate a micro-scale model of superfluidity derived by Pitaevskii (1959Sov. Phys. JETP8282–7) to describe the interacting dynamics between the superfluid and normal fluid phases of Helium-4. The model involves the nonlinear Schrödinger equation (NLS) and the Navier–Stokes equations, coupled to each other via a bidirectional nonlinear relaxation mechanism. Depending on the nature of the nonlinearity in the NLS, we prove global/almost global existence of solutions to this system in —strong in wavefunction and velocity, and weak in density.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available